N91-28207

Next Generation Solid Boosters

R. K. Lund

27 June 1990

Space Transportation Solid Rocket Motor Systems

Large Launch Solid Rocket Boosters

- Concept objectives:
 - Reduce booster costs to \$5–6/lbm of booster weight (60% decrease)
 - Increase booster reliability and safety (demonstrate 0.999X reliability/booster)
 - Clean propellant exhaust (no HCI)

INFORMATION ON THESE PAGES WAS PREPARED TO SUPPORT AN ORAL PRESENTATION AND CANNOT BE CONSIDERED COMPLETE WITHOUT THE ORAL DISCUSSION

Shuttle-Derived Heavy Lift Launch Vehicles

ALS-Derived Heavy Lift Launch Vehicles

Enabling Technologies

S.A.F.E.Rsm Philosophy

Statistical Analysis for Engineering Reliability

- Link reliability and producibility to affect design
- Conduct design to meet allocated reliability
 - Estimate design reliability based on estimated performance and capability distributions
 - Base capability distribution on historical test data and established requirements
 - Develop approach to estimate performance distribution from standard engineering models
- Link process control variables and key design variables to critical failure modes
- Establish test program to demonstrate reliability (tailor test data to establish capability and performance distributions)

Independent Performance and Capability Distributions Combined Into One Failure Distribution: X=C-P

Small Launch Vehicle Concept Objectives

- Provide family of small launch vehicles to increase user flexibility in delivering a broad range of payloads (600 to 2,000 lb) into LEO
 - . Remote sensing satellites
 - Communication and scientific research satellites
 - Recoverable capsules for industrial applications
- Retain high reliability of military systems
- Vehicle family based on basic motors (building blocks) derived from current strategic motor systems
- Minimize launch operations relating to vehicle
- Provide resiliency and responsiveness to launch on alert

Small Launch Vehicle Concept

Small Launch Vehicle Enabling Technologies

Reusable Flyback Booster System

- Concept objectives:
 - Solid rocket or hybrid propulsion
 - Booster transportation system for manned shuttle II and unmanned cargo carriers
 - · Vertical launch, horizontal landing
 - · Short turnaround cycle time
 - No preflight assembly required (load fuel and launch)
 - Lower recurring cost
- Enabling technologies:
 - Composite cases, struts, and wings
 - Cartridge-loaded propellant (SRM) or fuel (hybrid) grains
 - Integral removable aft dome/nozzle/skirt for quick fuel loading
 - Quick-change moldable nozzle insert or completely reusable (3–5 flights) advanced ceramic, passively cooled nozzle

High-Performance Solid Motors for Space

- Concept objectives
 - High-performance space propulsion system for:
 - Mars and lunar ascent propulsion
 - Orbit transfer propulsion
 - Long space storage capability
 - High I_{SD} performance
 - · High mass fraction performance
- Enabling technologies
 - High-performance beryllium propellants
 - I_{sp} (theoretical) = 360–400 lbf–sec/lbm at 100:1
 - High propellant density (~0.05–0.06 lbm/in.3)
 - Braided carbon-carbon exit cone
 - 4D carbon-carbon throat
 - Consumable igniter
 - Laser-diode safe-and-arm device
 - Graphite composite case

Measured Comparison of Be and Al Propellants

Propellant	TP-H-3062	TP-H-1092
Metal fuel	Al	Be
Ballistics (BATES)	· · · · · · · · · · · · · · · · · · ·	
Burn rate, 500 psi (in./sec) Pressure exponent (n)	0.26	0.33
Theoretical I_{sp} , vac, $\varepsilon = 50$ (lbf-sec/lbm) Measured I_{sp} , $\varepsilon = 50$ (lbf-sec/lbm)	315.50	342.20
Efficiency, η (%)	92.80	. 91.30

Conclusions

- Solids have multiple uses
 - Boosters
 - Small launch vehicles
 - Flybacks
 - Space transfer motors
- Keys to use
 - "Designed in" reliability
 - Low cost
 - Simplicity

PRESENTATION 1.3.4

ADVANCED LAUNCH SYSTEM